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Fitting State Space Models

I We have discussed how to fit NDLMs, but what happens when
we have models that are non-linear or non-Gaussian?

I This brings us into a much broader topic - non-linear SSMs
I We will discuss fitting non-linear SSMs in JAGS
I Motivate the use of other packages, like nimbleSMC
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Can We Still Use JAGS?

I JAGS can fit non-linear SSMs
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Can We Still Use JAGS?

I JAGS can fit non-linear SSMs
I There are (usually) no analytic full conditional distributions
I This means that JAGS will just do a brute force MCMC-MH to

estimate all the parameters and latent states
I Brute force with JAGS works sometimes, but we will cover

some alternative methods
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Non-linear SSM in JAGS

Recall the SSM from the first presentation,
xt = xt−1

2 + 25 xt−1
1 + x2

t−1
+ 8 cos(1.2t) + εproc

yt = x2
t
20 + εobs

εproc ∼ N(0, φ), εobs ∼ N(0, τ)
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Recall the SSM from the first presentation,
xt = xt−1

2 + 25 xt−1
1 + x2

t−1
+ 8 cos(1.2t) + εproc

yt = x2
t
20 + εobs

εproc ∼ N(0, φ), εobs ∼ N(0, τ)
This is a common test function in SSM literature (see Andrieu,
Doucet, and Holenstein for example) because it is a bit of a
nightmare to fit.
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Non-linear SSM in JAGS

Recall the SSM from the first presentation,
xt = xt−1

2 + 25 xt−1
1 + x2

t−1
+ 8 cos(1.2t) + εproc

yt = x2
t
20 + εobs

εproc ∼ N(0, φ), εobs ∼ N(0, τ)
This is a common test function in SSM literature (see Andrieu,
Doucet, and Holenstein for example) because it is a bit of a
nightmare to fit.
Let’s fit this model in JAGS
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Non-linear SSM in JAGS
library(rjags)
> Loading required package: coda
> Linked to JAGS 4.3.0
> Loaded modules: basemod,bugs
library(coda)
set.seed(50)
## set parameters
t <- 15
x <- rep(NA, t)
phi <- 1
tau <- 4
x[1] <- 10
## generate data
for (i in 2:t){

x[i] <- rnorm(1, .5*x[i-1] + 25*(x[i-1]) / (1 + x[i-1]ˆ2)
+ 8*cos(1.2*i), sd = 1/sqrt(phi))

}
y <- .05*xˆ2 + rnorm(t, 0, 1/sqrt(tau))
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Non-linear SSM in JAGS
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Non-linear SSM in JAGS
## sink the JAGS model
sink('jags_test_ex2.bug')
cat('model {

for(i in 2:nday){
x.pred[i] = .5*x[i-1] + 25*(x[i-1]) / (1 + x[i-1]ˆ2)
+ 8*cos(1.2*i)

x[i] ~ dnorm(x.pred[i], phi)
}
for(i in 1:nday){

y[i] ~ dnorm(.05*x[i]ˆ2, tau)
}
## Initial conditions
x[1] ~ dnorm(10, .5)

## Priors on process errors
phi ~ dnorm(0, .01)T(0,100)

}'
)
sink()
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Non-linear SSMs in JAGS

## make list of model data
model_data <- list('nday' = t,

'y' = y,
'tau' = tau)

## compile model
jags_ex2 <- jags.model('jags_test_ex2.bug',

data = model_data,
n.chains=1,
n.adapt=1000)

## generate samples
samples_ex1 = coda.samples(model = jags_ex2,

variable.names =
c('phi', paste0(paste0('x[', 1:t), ']')),
n.iter = 20000)
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Non-linear SSMs in JAGS
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Non-linear SSMs in JAGS

I We see that a few of our latent states estimates were quite far
from the truth
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Non-linear SSMs in JAGS

I We see that a few of our latent states estimates were quite far
from the truth

I The MCMC is having difficulty determining the sign of the
latent states

I MCMC-MH can have trouble exploring the entire parameter
space for the latent states

I One method of more efficiently generating samples for SSMs is
a particle filter
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Particle Filtering
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Particle Filtering

I Particle filters are a Monte Carlo method used to estimate the
states in dynamic models
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I They use a set of samples (called particles) drawn from the
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Particle Filtering

I Particle filters are a Monte Carlo method used to estimate the
states in dynamic models

I They use a set of samples (called particles) drawn from the
initial conditions

I These particles are evolved using the evolution function
f (xt |xt−1,Θ)

I When observations are available, these particles get weights
assigned and are resampled

I This generates approximations to the latent states
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The Bootstrap Filter

I One of the most common particle filters is the Bootstrap filter
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The Bootstrap Filter

I One of the most common particle filters is the Bootstrap filter
I It has an easy interpretation
I Relatively easy to implement
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The Bootstrap Filter Algorithm
Step 1: Generate a set of particles by sampling from the initial
conditions

8 9 10 11 12

0.
0

0.
2

0.
4

0.
6

0.
8

x

de
ns

ity

VectorBiTE Methods Training Bayesian State Space Modeling for Time Series Data



The Bootstrap Filter Algorithm
Step 2: Evolve the particles to the next timestep using f (xt |xt−1,Θ)
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The Bootstrap Filter Algorithm
Step 3: Generate weights for the particles using g(yt |xt ,Θ)
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The Bootstrap Filter Algorithm
Step 4: Resample the particles using the weights from Step 3 with
replacement (a la Bootstrapping)
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The Bootstrap Filter Algorithm

Step 5: Repeat this process for the next timestep, using the
bootstrap samples as the new set of particles
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Cons of Particle Filtering
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Cons of Particle Filtering

I Generally, larger numbers of particles lead to better
approximations
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Cons of Particle Filtering

I Generally, larger numbers of particles lead to better
approximations

I Large numbers of particles lead to a large increase in
computation time

I While the bootstrap filter is easy to implement, it can be
difficult to implement effectively and quickly

VectorBiTE Methods Training Bayesian State Space Modeling for Time Series Data



NIMBLE

I NIMBLE is an R package that extends the JAGS/BUGS language
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NIMBLE

I NIMBLE is an R package that extends the JAGS/BUGS language
I NIMBLE also uses a symbolic language to make coding of

models easier, and converts it to C++ code
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NIMBLE

I NIMBLE is an R package that extends the JAGS/BUGS language
I NIMBLE also uses a symbolic language to make coding of

models easier, and converts it to C++ code
I Can use methods other than MCMC-MH for sampling,

including particle filters
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Non-linear SSMs in NIMBLE
NIMBLE models are generated similarly to how they are in JAGS
library(nimble, quietly = TRUE)
library(nimbleSMC, quietly = TRUE)
nimble_ssm <- nimbleCode({

## initial conditions
x[1] ~ dnorm(10, tau = .5)
## phi prior
phi ~ dexp(scale = 10)
## latent process
for(i in 2:nday){

x[i] ~ dnorm(.5*x[i-1] + 25* (x[i-1] / (1 + x[i-1]ˆ2))
+ 8*cos(1.2*i), tau = phi)

}
## observation model
for(i in 1:nday){

y[i] ~ dnorm(.05*x[i]ˆ2, tau = tau)
}

})
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Non-linear SSMs in NIMBLE

## make data list
data <- list(y = y)
## set model constants
constants <- list(nday = 15, tau = tau)
## set starting values
inits <- list(

phi = 1,
x = sqrt(20*abs(y))

)
## compile model
stateSpaceModel <- nimbleModel(nimble_ssm,

data = data,
constants = constants,
inits = inits,
check = FALSE)
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Non-linear SSMs in NIMBLE
## add bootstrap filter for latent states
bootstrapFilter <- buildBootstrapFilter(stateSpaceModel, nodes = 'x')
## compile model to add bootstrap filter
compiledList <- compileNimble(stateSpaceModel, bootstrapFilter)

stateSpaceMCMCconf <- configureMCMC(stateSpaceModel, nodes = NULL)

## add a random walk sampler for phi
stateSpaceMCMCconf$addSampler(target = 'phi',

type = 'RW_PF',
control = list(latents = 'x'))

## re-compile to add phi sampler
stateSpaceMCMC <- buildMCMC(stateSpaceMCMCconf)
compiledList <- compileNimble(stateSpaceModel,

stateSpaceMCMC,
resetFunctions = TRUE)

## generate samples
compiledList$stateSpaceMCMC$run(10000)
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Comparison
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Review

In this training session, we have covered:
I What is a State Space model?
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Review

In this training session, we have covered:
I What is a State Space model?
I Why would you want to use State Space models?
I NDLM estimation theory
I How to fit, assess, and forecast using JAGS
I Background for particle filters
I How to use particle methods in NIMBLE
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What Else?

There are still a lot of things we didn’t have time to cover about
SSMs. For those interested in learning more, I suggest reading An
introduction to state-space modeling of ecological time series by
Auger-Methe et al, 2020.
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Other Options for Fitting
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Thank You Everyone!

VectorBiTE Methods Training Bayesian State Space Modeling for Time Series Data


