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Assumed Background

In this workshop, we expect that you are familiar with:
I axioms of probability and their consequences.
I conditional probability and Bayes theorem
I definition of a random variable (discrete and continuous)
I the idea of a probability distribution and likelihood

Pre-workshop reading and exercises were assigned to help you review
and get you ready.

We’ll do a VERY fast review of likelihoods and then practice
building them and finding the MLEs analytically and with R.
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Finding estimates of parameters

When we fit lines using least squares and similar techniques, we
defined a metric to measure distance between a prediction and our
data, and then found parameters that made that distance as small
as possible.

Likelihoods are another way of defining a distance between our
prediction (probability distribution) and data and allow us to find
parameter values that are consistent with the data under the
constraint of a particular probability distribution.
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Method of Moments

Before we review likelihoods, let’s review an easy alternative to
finding consistent parameters that assumes a probability distribution:
method of moments.

Consider an iid sample of n observations of a random variable
{x1, . . . , xn}. You can calculate sample values of the moments of
the RV from these, i.e.:

x̄ = 1
n

n∑
i=1

xi

s2 = 1
n
∑

(x − x̄)2
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You estimate the parameters of a probability distribution by
“matching’ ’ up the sample moments with the analytical values of
the moments for your probability distribution.

Example: The Poisson distribution has only one parameter λ. Since
the expected value of the Poisson E[x ] = λ we set:

λ = E[x ] = x̄

Then the MoM estimator is:

⇒ λ̂ = x̄
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Likelihoods

Recall that f (Yi ) is the pmf (pdf), and it tells us the probability
(density) of some yet to be observed datum Yi given a probability
distribution and its parameters.

If we make many observations, Y = y1, y2, . . . , yn, we are interested
how probable it was that we obtained these data, jointly. We call
this the likelihood of the data, and denote it as

L(θ; Y ) = fθ(Y )

where fθ(Y ) is the pdf (or pmf) of the data interpreted as a
function of θ.
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For instance, for binomial data:

Pr(Yi = k|θ = p) =
(

N
k

)
pk(1− p)N−k .

If we have data Y = y1, y2, . . . , yn that are i.i.d. as binomial RVs,
the probabilities multiply, and the likelihood is:

L(θ; Y ) =
n∏

i=1

(
N
yi

)
pyi (1− p)N−yi .
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Likelihoods vs. probability

“Likelihood is the hypothetical probability [density] that an event
that has already occurred would yield a specific outcome. The
concept differs from that of a probability in that a probability refers
to the occurrence of future events, while a likelihood refers to past
events with known outcomes.” (1)

Further, the likelihood is a function of θ (the parameters), assuming
fixed data.

1. Weisstein, Eric W. “Likelihood.’ ’ From MathWorld–A Wolfram Web Resource.

http://mathworld.wolfram.com/Likelihood.html
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We are usually interested in relative likelihoods – e.g., is it more
likely that the data we observed came from a distribution with
parameters θ1 or θ2? Thus we only worry about the likelihood up to
a constant.

Further, it is often easier to work with the log-likelihood:

L(θ; Y ) = `(θ; Y ) = log(L(θ; Y ))

where log(·) is the natural log.
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Maximum Likelihood Estimators (MLEs)

We can find the parameters that are most likely to have generated
our data – the maximum likelihood estimate (MLE) of the
parameters. To do this we maximize the likelihood (or equivalently
minimizing the negative log-likelihood) by taking its derivative and
setting it equally to zero:

∂L
∂θj

= 0 or − ∂L
∂θj

= 0

where j denotes the jth parameter.

We usually denote the MLE as θ̂j .
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The likelihood DOES NOT tell you the probability that parameters
have a certain value, given the data.

To obtain that quantity, usually called the “posterior probability of
the parameters” in Bayesian statistics, you have to use Bayes
Theorem (later lectures).
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A Simple Example: MLE for mean midge wing lengths
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Likelihood profile in R
We interpret the negative log-likelihood (NLL) as a function of the
parameters assuming that the data are constant. We visualize the
NLL with a profile → evaluate the NLL for many possible values of
a parameter. The best estimate has the lowest NLL value.

N<-50
sigma<-0.1
mus<-seq(1, 2.5, length=N)
mynll<-rep(NA, length=50)

for(i in 1:N){
mynll[i]<- nll.norm(

par=mus[i],
dat=midgedat$WingLength,
sigma=sigma
)
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Next Steps

There are two sets of tasks in the likelihood practical to help you
get comfortable with likelihoods:

1. Mathematical Practice (using Binomial Distribution Example)
2. Coding Practice (maximum likelihood for SLR using R)
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