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Learning Objectives

In this module you will:
1. Learn what makes time series (TS) data different from other

regression data.
2. See how to visualize and learn about autocorrelation in a TS.
3. Learn how to use basic regression techniques to fit models that

include AR, trending, and periodic components.
4. Learn what diagnostics to examine to determine if your models

are fitting well.
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Time series data and dependence

Time-series data are simply a collection of observations gathered
over time. For example, suppose y1, . . . , yT are
I daily temperature,
I solar activity,
I CO2 levels,
I GDP,
I yearly population size.

In each case, we might expect what happens at time t to be
correlated with time t − 1.
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Suppose we measure temperatures, daily, for several years.

Which would work better as an estimate for today’s temp:
I The average of the temperatures from the previous year?
I The temperature on the previous day?

insert_slide_break()

How would this change if the readings were iid N (µ, σ2)?

Correlated errors require fundamentally different techniques.

VectorBiTE Methods Training Introduction to Auto-correlated Data and Time Series



Example: Yt = average daily temp. at ROA, Feb-Mar 2018.
weather <- read.csv("../data/Roanoke_weather2018.csv")
days<-32:90 ## This picks out February and March
weather<-weather[days,c(1,3,7)]; names(weather)[3]<-"temp"
plot(weather$temp, xlab="day", ylab="temp (F)", type="l",

col=2, lwd=2, cex.lab=0.75, cex.axis=0.75, mgp=c(2,1,0))
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I “sticky” sequence: today tends to be close to yesterday.
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Example: Yt = monthly UK deaths due to lung infections
ld<-as.vector(ldeaths)
plot(ld, xlab="month", ylab="deaths", type="l",

col=4, lwd=2, cex.lab=0.75, cex.axis=0.75, mgp=c(2,1,0))
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I The same pattern repeats itself year after year.
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rand<-rnorm(200)
plot(rand, xlab="t", ylab="Y_t", type="l",

col=6, lwd=2, cex.lab=0.75, cex.axis=0.75, mgp=c(2,1,0))
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I It is tempting to see patterns even where they don’t exist.
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Checking for dependence
To see if Yt−1 would be useful for predicting Yt , just plot them
together and see if there is a relationship.
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Corr = 0.66

I Correlation between Yt and Yt−1 is called autocorrelation.
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We can plot Yt against Yt−` to see `-period lagged relationships.
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I Correlation appears to be getting weaker with increasing `.
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Autocorrelation
To summarize the time-varying dependence, compute lag-`
correlations for ` = 1, 2, 3, . . .

In general, the autocorrelation function (ACF) for Y is

r(`) = cor(Yt ,Yt−`)

For our Roanoke temperature data:
print(acf(weather$temp, plot=FALSE))
>
> Autocorrelations of series 'weather$temp', by lag
>
> 0 1 2 3 4 5 6 7 8 9 10
> 1.000 0.658 0.298 0.263 0.297 0.177 0.111 0.008 -0.099 -0.045 0.071
> 11 12 13 14 15 16 17
> -0.020 -0.157 -0.156 -0.146 -0.278 -0.346 -0.314
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R’s acf function provides a visual summary of our data dependence:

acf(weather$temp, cex.lab=0.75, cex.axis=0.75, main="")
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The lung infection data shows an alternating dependence structure
which causes time series oscillations.

acf(ld, cex.lab=0.75, cex.axis=0.75, main="")
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An acf plot for iid normal data shows no significant correlation.

acf(rand, cex.lab=0.75, cex.axis=0.75, main="")
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Autoregression

How do we model data that exhibits autocorrelation?

Suppose Y1 = ε1, Y2 = ε1 + ε2, Y3 = ε1 + ε2 + ε3, etc.
Then Yt =

∑t
i=1 εi = Yt−1 + εt and E[Yt ] = Yt−1.

This is called a random walk model for Yt :
I the expectation of what will happen is always what happened

most recently.

Even though Yt is a function of errors going all the way back to the
beginning, you can write it as depending only on Yt−1.
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Random walks are just a version of a more general model . . .

The autoregressive model of order one holds that

AR(1) : Yt = β0 + β1Yt−1 + εt , εt
iid∼ N (0, σ2).

This is just a SLR model of Yt regressed onto lagged Yt−1.

It assumes all of our standard regression model conditions.
I The residuals should look iid and be uncorrelated with Ŷt .
I All of our standard diagnostics and transforms still apply.
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AR(1) : Yt = β0 + β1Yt−1 + εt

Again, Yt depends on the past only through Yt−1.

I Previous lag values (Yt−2,Yt−3, . . .) do not help predict
Yt if you already know Yt−1.

Think about daily temperatures:
I If I want to guess tomorrow’s temperature (without the help of

a meterologist!), it is sensible to base my prediction on today’s
temperature, ignoring yesterday’s.
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For the Roanoke temperatures, there was clear autocorrelation when
we plotted above.
Let’s fit a linear model between temperature and its one step lag
value:

tempreg <- lm(weather$temp[2:59] ~ weather$temp[1:58])

Then look at the summary (see next page) . . . .The autoregressive
term (b1 ≈ 0.66) is highly significant!
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summary(tempreg)
>
> Call:
> lm(formula = weather$temp[2:59] ~ weather$temp[1:58])
>
> Residuals:
> Min 1Q Median 3Q Max
> -17.0361 -4.8393 -0.5893 4.3457 17.4232
>
> Coefficients:
> Estimate Std. Error t value Pr(>|t|)
> (Intercept) 15.2420 4.5729 3.333 0.00153 **
> weather$temp[1:58] 0.6584 0.1007 6.541 1.98e-08 ***
> ---
> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
>
> Residual standard error: 7.328 on 56 degrees of freedom
> Multiple R-squared: 0.4331, Adjusted R-squared: 0.423
> F-statistic: 42.78 on 1 and 56 DF, p-value: 1.98e-08
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We can check residuals for any “left-over” autocorrelation.

acf(tempreg$residuals, cex.lab=0.75, cex.axis=0.75, main="")
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I Looks like we’ve got a good fit!
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For the lung infection data, the AR term is also highly significant:
lungreg <- lm(ld[2:72] ~ ld[1:71]); summary(lungreg)
>
> Call:
> lm(formula = ld[2:72] ~ ld[1:71])
>
> Residuals:
> Min 1Q Median 3Q Max
> -878.5 -251.3 -138.6 175.9 1297.7
>
> Coefficients:
> Estimate Std. Error t value Pr(>|t|)
> (Intercept) 487.13140 162.00888 3.007 0.00368 **
> ld[1:71] 0.75571 0.07546 10.015 4.39e-15 ***
> ---
> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
>
> Residual standard error: 387.6 on 69 degrees of freedom
> Multiple R-squared: 0.5924, Adjusted R-squared: 0.5865
> F-statistic: 100.3 on 1 and 69 DF, p-value: 4.39e-15
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But residuals show a clear pattern of left-over autocorrelation:

acf(lungreg$residuals, cex.lab=0.75, cex.axis=0.75, main="")
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I We’ll talk later about how to model this type of pattern . . .
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Many different types of series may be written as an AR(1).

AR(1) : Yt = β0 + β1Yt−1 + εt

The value of β1 is key!
I If |β1| = 1, we have a random walk.
I If |β1| > 1, the series explodes.
I If |β1| < 1, the values are mean reverting.
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Random walk: β1 = 1

In a random walk, the series just wanders around.
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Autocorrelation of a random walk stays high for a long time.
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The random walk has some special properties . . .

Yt − Yt−1 = β0 + εt , and β0 is called the “drift parameter”.

The series is nonstationary:
I it has no average level that it wants to be near, but rather just

wanders off into space.

The random walk without drift (β0 = 0) is a common model for
simple processes
I since E[Yt ] = E[Yt−1]}, e.g., tomorrow ≈ today
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Example: monthly Dow Jones composite index, 2000–2007.
dja <- read.csv("../data/dja.csv")$DJ
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I Appears as though it is just wandering around.

VectorBiTE Methods Training Introduction to Auto-correlated Data and Time Series



Let’s do our regression and check the output:
n <- length(dja)
ARdj <- lm(dja[2:n] ~ dja[1:(n-1)])

Sure enough, our regression indicates a random walk (b1 ≈ 1)
I (b0 > 0, but not enough data to be sure of positive drift.)

(see summary, next page)
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summary(ARdj)
>
> Call:
> lm(formula = dja[2:n] ~ dja[1:(n - 1)])
>
> Residuals:
> Min 1Q Median 3Q Max
> -144.00 -18.55 -1.02 19.02 226.86
>
> Coefficients:
> Estimate Std. Error t value Pr(>|t|)
> (Intercept) 7.05419 4.00385 1.762 0.0782 .
> dja[1:(n - 1)] 0.99764 0.00121 824.298 <2e-16 ***
> ---
> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
>
> Residual standard error: 32.13 on 1976 degrees of freedom
> Multiple R-squared: 0.9971, Adjusted R-squared: 0.9971
> F-statistic: 6.795e+05 on 1 and 1976 DF, p-value: < 2.2e-16
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When you switch to returns, however, it’s just white noise.
returns <- (dja[2:n]-dja[1:(n-1)])/dja[1:(n-1)]
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(Yt − Yt−1)/Yt−1 appears to remove the dependence, and now the
regression model finds nothing significant. This is common with
random walks ⇒ Yt − Yt−1 is iid.
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ret <- lm(returns[2:n] ~ returns[1:(n-1)]); summary(ret)
>
> Call:
> lm(formula = returns[2:n] ~ returns[1:(n - 1)])
>
> Residuals:
> Min 1Q Median 3Q Max
> -0.052138 -0.005867 -0.000388 0.005707 0.085140
>
> Coefficients:
> Estimate Std. Error t value Pr(>|t|)
> (Intercept) -0.0001138 0.0002363 -0.482 0.630
> returns[1:(n - 1)] -0.0144411 0.0225321 -0.641 0.522
>
> Residual standard error: 0.01051 on 1975 degrees of freedom
> (1 observation deleted due to missingness)
> Multiple R-squared: 0.0002079, Adjusted R-squared: -0.0002983
> F-statistic: 0.4108 on 1 and 1975 DF, p-value: 0.5217
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Exploding series β1 = 1.02

For AR term > 1, the Yt ’s move exponentially far from Y1.
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I Useless for modeling and prediction.
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Stationary series: β1 = 0.8

For AR term < 1, Yt is always pulled back towards the mean.

0 50 100 150 200

−
4

−
2

0
2

4

Index

ss

I These are the most common, and most useful, type of AR
series.
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Autocorrelation for the stationary series drops off right away.
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I The past matters, but with limited horizon.
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Mean reversion

An important property of stationary series is mean reversion.

Think about shifting both Yt and Yt−1 by their mean µ.

Yt − µ = β1(Yt−1 − µ) + εt

Since |β1| < 1, Yt is expected to be closer to µ than Yt−1.

Mean reversion is all over, and helps predict future behavior:
I weekly sales numbers,
I daily temperature.
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Negative correlation: β1 = −0.8

It is also possible to have negatively correlated AR(1) series.
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I But you see these far less often in practice.
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Summary of AR(1) behavior

I |β1| < 1: The series has a mean level to which it reverts. For
positive β1, the series tends to wander above or below the
mean level for a while. For negative β1, the series tends to flip
back and forth around the mean. The series is stationary,
meaning that the mean level does not change over time.

I |β1| = 1: A random walk series. The series has no mean level
and, thus, is called nonstationary. The drift parameter β0 is the
direction in which the series wanders.

I |β1| > 1: The series explodes, is nonstationary, and pretty
much useless.
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AR(p) models

It is possible to expand the AR idea to higher lags

AR(p) : Yt = β0 + β1Yt−1 + · · ·+ βpYt−p + ε.

However, it is seldom necessary to fit AR lags for p > 1.
I Like having polynomial terms higher than 2, this just isn’t

usually required in practice.
I You lose all of the stationary/non-stationary intuition.
I Often, the need for higher lags is symptomatic of (missing) a

more persistent trend or periodicity in the data . . .
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Trending series

Often, you’ll have a linear trend in your time series.
⇒ AR structure, sloping up or down in time.

0 50 100 150 200

−
12

−
8

−
4

0

time

ss
t

VectorBiTE Methods Training Introduction to Auto-correlated Data and Time Series



This is easy to deal with: just put “time” in the model.
AR with linear trend:

Yt = β0 + β1Yt−1 + β2t + εt

t <- 1:199
sst.fit <- lm(sst[2:200] ~ sst[1:199] + t)

VectorBiTE Methods Training Introduction to Auto-correlated Data and Time Series



summary(sst.fit) ## abbreviated output
>
> Call:
> lm(formula = sst[2:200] ~ sst[1:199] + t)
>
> Residuals:
> Min 1Q Median 3Q Max
> -2.29473 -0.66175 -0.05942 0.61585 2.50262
>
> Coefficients:
> Estimate Std. Error t value Pr(>|t|)
> (Intercept) -0.349424 0.145975 -2.394 0.0176 *
> sst[1:199] 0.757453 0.046663 16.232 < 2e-16 ***
> t -0.011416 0.002515 -4.538 9.87e-06 ***
> ---
> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
>
> Residual standard error: 0.9493 on 196 degrees of freedom
> Multiple R-squared: 0.907, Adjusted R-squared: 0.906
> F-statistic: 955.6 on 2 and 196 DF, p-value: < 2.2e-16
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Periodic models
It is very common to see seasonality or periodicity in series.
I Temperature goes up in Summer and down in Winter.
I Gas consumption (used for heating) would do the opposite.

Recall the monthly lung infection data:
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I Appears to oscillate on a 12-month cycle.
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The straightforward solution: Add periodic predictors.

Period−k model :

Yt = β0 + β1 sin(2πt/k) + β2 cos(2πt/k) + εt

Remember your sine and cosine!
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I Repeating themselves every 2π.
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Period−k model :

Yt = β0 + β1 sin(2πt/k) + β2 cos(2πt/k) + εt

It turns out that you can represent any smooth periodic functionas a
sum of sines and cosines.

You choose k to be the number of “times” in a single period.
I For monthly data, k = 12 implies an annual cycle.
I For quarterly data, usually k = 4.
I For hourly data, k = 24 gives you a daily cycle.
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Let’s fit an AR with sine/cosine predictors:

Yt = β0 + β1Yt−1 + β2 sin(2πt/k) + β3 cos(2πt/k) + εt

We want to make new predictors/dataframe, much like when we
add polynomial terms, and then fit.
tmax<-length(ld)
t <- 2:tmax
YX <- data.frame(ld=ld[2:tmax], ldpast=ld[1:(tmax-1)], t=t,

sin12=sin(2*pi*t/12), cos12=cos(2*pi*t/12))
lunglm <- lm(ld ~ ldpast + sin12 + cos12, data=YX)
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summary(lunglm) ## abbreviated output
>
> Call:
> lm(formula = ld ~ ldpast + sin12 + cos12, data = YX)
>
> Residuals:
> Min 1Q Median 3Q Max
> -624.89 -114.94 8.84 150.13 1074.79
>
> Coefficients:
> Estimate Std. Error t value Pr(>|t|)
> (Intercept) 1379.3598 247.5536 5.572 4.84e-07 ***
> ldpast 0.3260 0.1189 2.741 0.007853 **
> sin12 377.5492 101.9206 3.704 0.000431 ***
> cos12 402.7845 44.8015 8.990 3.98e-13 ***
> ---
> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
>
> Residual standard error: 260.9 on 67 degrees of freedom
> Multiple R-squared: 0.8207, Adjusted R-squared: 0.8127
> F-statistic: 102.2 on 3 and 67 DF, p-value: < 2.2e-16

VectorBiTE Methods Training Introduction to Auto-correlated Data and Time Series



The model predictions look pretty good!
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I Sine and cosine trends seem to capture the periodicity.
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The residuals look pretty good.
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I Maybe a bit of downward linear trend?
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Alternative Periodicity

An alternative way to add periodicity would be to simply add a
dummy variable for each month (feb, mar, apr, ...).

I This achieves basically the same fit as above, without requiring
you to add sine or cosine.

I However, this takes 11 periodic parameters while we use only 2.
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I like to think of the periodicity as a smooth oscillation, with sharp
day/month effects added for special circumstances.

I Requires more thought, but leads to better models.
I The sin + cos technique works regardless of the number of

increments in a period (e.g. 365 days).

The exception:
I Since quarterly data has a period of only 4, it is often fine to

just add “quarter” effects.
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Time series Sum-Up

As with other regression approaches, there are many possible
models; you can use BIC with extractAIC(reg, k = log(n)) to
compare and choose.

The tools here are good, but not the best:
I In many situations you want to allow for β or σ parameters

that can change in time.
I This can leave us with some left-over autocorrelation.
I These approaches only work for data that are evenly spaced

with no gaps
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Practice: In the Roanoke Airport weather dataset, I used the
average temperature (TAVG), but there are additional columns.

For one of either TMIN or TMAX
I Plot the data from Feb and March.
I Plot the correlation between temperature at time t and t − 1

and calculate the correlation.
I Plot the ACF of the time series.
I Fit a simple autoregressive model to the TS data. What is your

coefficient and what do you conclude about the kind of
behavior that your TS exhibits?
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Practice: Monthly Sunspot Data.

Data on the mean number of sunspots in each month from 1749 to
2013 are available in R as sunspot.month.
I Plot the sunspot data. What do you observe? Do you think

you would want to take any transformations of the data?
I Plot the correlation between the number of sunspots at time t

and t − 1 and calculate the correlation.
I Plot the ACF of the time series (note – you’ll need to make the

max lag very large).
I Based on the previous parts, propose a simple AR model plus a

periodic and trend component. Check your residuals and your
predictions. How well did you do? If you have trouble fitting,
try slightly changing the frequency of your periodic component.

VectorBiTE Methods Training Introduction to Auto-correlated Data and Time Series



Next Steps

In the practical for this component we’ll step you through fitting a
variety of models with trending, seasonal, and AR components for a
classic time series data set. You’ll then get to try it yourself on
dengue case data.
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