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Learning Objectives

1. Understand the basic principles underlying Bayesian modeling
methodology

2. Introduce how to use Bayesian inference for real-world problems
3. Introduce computation tools to perform inference for simple

models in R (how to turn the Bayesian crank)
4. Appreciate the need for sensitivity analysis, model checking and

comparison, and the potential dangers of Bayesian methods.
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What is Bayesian Inference?

In the Bayesian approach our probabilities numerically represent
rational beliefs.

Bayes rule provides a rational method for updating those beliefs in
light of new information and incorporating/quantifying uncertainty
in those beliefs.

Thus, Bayesian inference is an approach for understanding
data inductively.
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Recall: Bayes Theorem

Bayes Theorem allows us to relate the conditional probabilities of
two events A and B:

Pr(A|B) = Pr(B|A)Pr(A)
Pr(B)
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What is Bayesian Inference?

We can re-write Bayes rule in terms of our parameters, θ and our
data, Y :

Pr(θ|Y ) = Pr(Y |θ)Pr(θ)
Pr(Y )

The LHS is the main quantity of interest in a Bayesian analysis, the
posterior, denoted f (θ|Y ):

Posterior︷ ︸︸ ︷
f (θ|Y ) ∝

Likelihood︷ ︸︸ ︷
L(θ; Y )×

Prior︷︸︸︷
f (θ)
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Bayesian methods provide

1. models for rational, quantitative learning
2. parameter estimates with good statistical properties
3. estimators that work for small and large sample sizes
4. parsimonious descriptions of data, predictions for missing data,

and forecasts for future data
5. a coherent computational framework for model estimation,

selection and validation
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Classical vs Bayesian

The fundamental differences between classical and Bayesian
methods is what is fixed and what is random in an analysis.

Paradigm Fixed Random

Classical param (θ) data (Y )
Bayesian data (Y ) param (θ)
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Why/Why Not Bayesian Statistics?
Pros
1. If f (θ) & L(θ; Y ) represent a rational person’s beliefs, then

Bayes’ rule is an optimal method of updating these beliefs
given new info (Cox 1946, 1961; Savage 1954; 1972).

2. Provides more intuitive answers in terms of the probability that
parameters have particular values.

3. In many complicated statistical problems there are no obvious
non-Bayesian inference methods.

Cons
1. It can be hard to mathematically formulate prior beliefs (choice

of f (θ) often ad hoc or for computational reasons).
2. Posterior distributions can be sensitive to prior choice.
3. Analyses can be computationally costly.
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Steps to Making Inference

1. Research question
2. Data collection
3. Model Yi ≈ f (Xi )
4. Estimate the parameter in the model with uncertainty
5. Make inference

The difference between Classical and Bayesian lies in step 4:
I (C) uses maximum likelihood estimate (MLE), and
I (B) derives a posterior distribution.
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Example: Estimating the probability of a rare event

Suppose we are interested in the prevalence of an infectious disease
in a small city. A small random sample of 20 individuals will be
checked for infection.
I Interest is in the fraction of infected individuals

θ ∈ Θ = [0, 1]

I The data records the number of infected individuals

y ∈ Y = {0, 1, . . . , 20}
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Example: Likelihood/sampling model

Before the sample is obtained, the number of infected individuals is
unknown.
I Let Y denote this to-be-determined value
I If θ were known, a sensible sampling model is

Y |θ ∼ Bin(20, θ)
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Example: Prior
Other studies from various parts of the country indicate that the
infection rate ranges from about 0.05 to 0.20, with an average
prevalence of 0.1.
I Moment matching from a beta distribution (a convenient

choice) gives the prior θ ∼ Beta(2, 20)
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Example: Posterior

The prior and sample model combination:

θ ∼ Beta(a, b)
Y |θ ∼ Bin(n, θ)

and an observed y (the data), leads to the posterior

p(θ|y) = Beta(a + y , b + n − y)
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Example: Posterior

For our case, we have a = 2, b = 20, n = 20.
If we don’t find any infections, then y = 0 our posterior is:

p(θ|y = 0) = Beta(2, 40)
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Example: Sensitivity Analysis

How influential is our prior?

The posterior expectation is

E{θ|Y = y} = n
w + n ȳ + w

w + nθ0

a weighted average of the sample mean and the prior expectation:

θ0 = a
a + b → prior expectation (or guess)

w = a + b → prior confidence
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Example: A non-Bayesian approach

A standard estimate of a population proportion, θ is the sample
mean ȳ = y/n, the fraction of infected people in the sample.

If y = 0, this gives zero, so reporting the sampling uncertainty is
crucial (e.g., for reporting to health officials).

The most popular 95% confidence interval for a population
proportion is the Wald Interval:

ȳ ± 1.96
√

ȳ(1− ȳ)/n.

This has the correct asymptotic coverage, but y = 0 is still
problematic!
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Conjugate Bayesian Models

Some sets of priors/likelihoods/posteriors exhibit a special
relationship called conjugacy. This happens if the posterior
distribution has the same form as the prior. For instance, in our
above Beta-Binomial/Bernoilli examples:

θ ∼ Beta(a, b)
Y |θ ∼ Bin(n, θ)
θ|Y ∼ Beta(a∗, b∗)

Are all posteriors in the same family as the priors? No
Conjugacy is a nice special property, but most of the time this isn’t
the case and getting an analytic form of the posterior distribution
can be hard or impossible.
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What do you do with a Posterior?

I Summarize important aspects of the posterior
I mean, median, mode, variance. . .

I Check sensitivity of posterior to prior choice
I Say what range of parameters is consistent with the observed

data given our prior information
I Make predictions
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Posterior Summaries

If we are interested in point-summaries of our posterior then the
(full) distribution allows us many choices. For example for the
Beta-Binomial model, we found that

p(θ|y) = Beta(a + y , b + n − y)

So, for example:

E[θ|Y ] = a + y
a + b + n

mode(θ|Y ) = a + y − 1
a + b + n − 2 †

† a.k.a. the maximum a posteriori estimator (MAP)
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Prior Sensitivity

As we saw earlier for the Beta-Binomial model, the posterior
expectation can be written as a weighted average of information
from the prior and the data

E{θ|Y = y} = n
a + b + n ȳ + a + b

a + b + nθ0.

Thus a and b can be interpreted here as prior data where a is the
number of prior successes and a + b is the prior sample size. When
n� a + b most of our information comes from the data instead of
the prior.
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We usually visualize the prior vs. posterior to check for sensitivity,
since we don’t have analytic ways, in general.
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Confidence Regions

An interval [l(y), u(y)], based on the observed data Y = y , has 95
% Bayesian coverage for θ if

P(l(y) < θ < u(y)|Y = y) = 0.95

The interpretation: it describes your information about the true
value of θ after you have observed Y = y .

Such intervals are typically called credible intervals, to distinguish
them from frequentist confidence intervals. Both are referred to as
CIs.
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Quantile-based (Bayesian) CI

Perhaps the easiest way to obtain a credible interval is to use the
posterior quantiles.
To make a 100× (1− α) % quantile-based CI, find numbers
θα/2 < θ1−α/2 such that
I P(θ < θα/2|Y = y) = α/2
I P(θ > θ1−α/2|Y = y) = α/2

The numbers θα/2, θ1−α/2 are the α/2 and 1− α/2 posterior
quantiles of θ.
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Example: Binomial sampling + uniform prior

Suppose out of n = 10 conditionally independent draws of a binary
random variable we observe Y = 2 ones (successes).

Using a uniform prior distribution (a.k.a., Beta(1, 1)) for θ, the
posterior distribution is θ|y = 2 ∼ Beta(1 + 2, 1 + 10− 2).

A 95 % CI can be obtained from the 0.025 and 0.975 quantiles of
this beta distribution (e.g., using {R}):
round(qbeta(p=c(0.025, 0.975), 3, 9), 2)
#> [1] 0.06 0.52

Thus the posterior probability that θ ∈ [0.06, 0.52] is 95 %.
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Example: Binomial sampling + uniform prior

One drawback: Notice that there are θ-values outside the
quantile-based CI that have higher probability [density] than some
points inside the interval.
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HPD region

An alternative is a more restrictive type of interval. A 100× (1− α)
% highest posterior density (HPD) regions is the part of parameter
space, s(y), such that:
1. P(θ ∈ s(y)|Y = y) = 1− α
2. If θa ∈ s(y) and θb /∈ s(y) then P(θa|Y = y) > P(θb|Y = y)

So that all points in the HPD region have higher probability density
than those outside.

VectorBiTE Methods Training Introduction to Bayesian Statistics



Example: Binomial sampling + uniform prior

Numerically, we collect the highest density points with cumulative
density greater that 1− α:
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The 95 % HPD region is [0.04, 0.48] which is narrower than the
quantile-based CI, yet both contain 95 % probability.
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Exercise: Is a treatment for cancer effective?
We have data on n cancer patients that have been given a treatment.
Our outcome variable is whether or not it was “effective’ ’:

Patient Effectiveness Numerical Data

1 N 0
2 N 0
3 Y 1
...

...
...

The appropriate sampling model for each patient is a Bernoilli:

Yi |θ
iid∼ f (Y |θ) = Bern(θ)

where θ is the success rate of the treatment. Write down the
likelihood for the n patients. Then, assuming a Beta(a, b) prior for
θ, find the posterior distribution for θ|Y . Does this look familiar?
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Next Steps

Next you’ll complete a practical where you conduct a conjugate
Bayesian analysis for the mean of a normal distribution on the
midge data introduced in the likelihood chapter. You’ll also visualize
the effect of different prior choices on the posterior distribution.
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